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Introduction 

The prolate spheroidal wave functions, { n, , (t)} , constitute an 
orthonormal basis of the space of  band limited functions on the real 

line. They are concentrated on the interval ,  and, of course, depend 

on the two parameters    and . Landau[1],Walter and Shen [7] have 

characterized them as the Eigen functions of an integral operator: 
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The Sinc function 
t

tSin
tS )(  which appears in this formula is closely 

related to the )(   PSWFs ,, tn . In  addition to the equation (1.1), the 

)(  ,, tn  satisfy an integral equation over ),(  as well : 
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where  
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StS )(  

This leads to a dual orthogonality  
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Thus, { n, , } constitute an orthogonal basis of L
2 

(- , ), as well as 

an orthonormal basis of the subspace B  of L
2 

(-∞,∞), the Paley Wiener 

space of all - band limited functions. 
The PSWFs are closely related to the Fourier transform. Indeed, 

the Fourier transform of n, ,   is given by   

Where )(K  is the characteristic function of   

 
 
 
 

Abstract 

   Prolate Spheroidal wave functions (PSWFs) have been shown 
to be the best tool for analyzing some problems raised in signal 
processing and telecommunication. The wavelets derived from PSWFs 
are most highly localized simultaneously in both the time and frequency 
domain. Prolate spheroidal wavelets are well behaved with respect to 
differentiation, translation and convolution. They have also some 
interesting convergence properties in several function spaces. In this 
work, wavelet transforms and related properties have been discussed for 
these new wavelets. 
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[- , ]. 
Therefore the inverse Fourier transform gives us still  
another formula: 

The above formulae and several other 

related details may be found in works of several 
workers (see Landau [1], Landau and Pollak [2&3], 
Landau and Widom [4] , Papoulis [5], Slepian  [6] , 
Walter and Shen [7] and Walter [8] ). 

Prolate Spheroidal Wavelets  
In order to construct these PSWF wavelets , we begin 

with a scaling function , whose integer translates are 
a Reisz basis of a space Vo . This space is usually 

taken to be a subspace of L
2
(R) . We shall take (x) = 

o, , (x) where  is any positive number , with this 
choice the space Vo will turn out to be the Paley-

Wiener space B  of - band limited functions no 

matter what the choice of . 
 There are several ways of constructing 

bases of the other subspaces            Vm = B2
m

  from 
those of V0. One uses the standard wavelet approach 

in which dilations of   o, ,   , that is,  

)2(,, tm

o
 are used  to get the basis 

)2(,, ntm

o   of Vm. In this case we get 
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therefore he concentration interval becomes 
progressively smaller as m increases. In order to 
avoid this,we have to find a way to make sure the 
concentration interval remains constant. We may do 

this by taking   )2(
,2,

nt m

o m   as a Riesz basis 

of Vm.  
Thus the PS mother wavelets is given by  

)()
2

3
()(

,,
2

ttCost
o

 

Which is orthogonal to all integer translates of 

)(,o, t . 

The PS father wavelet is denoted by  

(t)  = )(,o, t             

Thus we define PS father wavelet at scale m by  

m(t)  = )(
,o,2m t                                                                                                

……….. 
(2.1)

 

and the PS mother wavelet at scale m is given by  
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The Translates of mother wavelets form a 

Riesz basis of the orthogonal complement of Vo in V1  

which is be denoted by W0  with its dilations denoted 
by Wm.    
We state the following (Theorem 1.in [7]) 

Let m  and  m  be given by (2.1) and (2.2), 

respectively. Let  mBVm 2
  and Wm be the 

orthogonal complement of Vm in Vm+1, then 

zn

m

o
ntm )2(

,2,
is a  Riesz basis of Vm and 

zn

m

m nt )2( is a Riesz basis of Wm. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Wavelet Transform Properties 

`For data compression, denoising and similar 

applications, the design of (t) must be optimized to 
produce the maximum number of zero wavelet 
coefficients. The properties of the wavelet that mostly 
affect the number of non- zero coefficients are the 
following : 

(i) Number of vanishing moments of the wavelet (t) 

(ii) Regularity of the function (t) 

The Wavelet (t) has p vanishing moments if 

pkfordttt k 0,0)(                        

It can be shown that if Fourier transform of the 

wavelet function (t) is p times continuously 

differentiable at  = 0 , the following holds : 
(a) The wavelet function has p vanishing moments . 

(b) )(ˆ  and its first (p-1)  derivatives  are zero at  =0  

Fourier transform of (t) is given by : 
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Wavelet  0(t) as  defined in (2.2) 
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This shows that )(ˆ  has a compact support [-2 ,-

] U [ ,2 ]  and  )(ˆ =0 in the vicinity of =0. 

Hence all derivatives of  )(ˆ  are zero at =0 and 

this proves that (t) has infinite number of vanishing 
moment.  

Now let us consider regularity  of the function 

(t). 

Since )()
2

3
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 , by using 

Leibnitz formula, we may write for k-th derivative : 
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Since 
(n)

(t) is bounded for n=01,2,- - - as 

proved in [1], Hence 
(k)

(t) exists for all k=01,2,- - - . It 

is also easy to check that 
(k)

(t) belongs to Wo . Thus 
we have proved  the following proposition: 

Proposition 1: The PS mother wavelets (t) has an 

infinite number of vanishing moments and has 
derivatives of all orders belonging to the same space 
Wo. 
Integration 

 In this sub section, we shall consider the 

integration of the PS wavelet (t). As we have seen 

above that  0)()0( dtt


. Furthermore, 

we have the following result about the integration of 

PS wavelet (t): 

Proposition 2  The integral of PS wavelet (t) 

belongs to the space W0 which is orthogonal 
complement of V0 in V1. 

Proof :       Let  

t
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 Integrating by parts  we have  
 

dt
i

e
tduu

i

e
wg

titti

)()()(ˆ

 

   )(
1

)(
1 

i
dtet

i

ti
 ,           o  

 Thus we see that the Fourier transform of the 

integral 

t

dtt)(  has the same support 

2,,2  and hence the integral 

function g(t) belongs to Wo. 
If o , then  
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since )(t  has infinite number of vanishing 

moments. Thus, we see that the Fourier transform of 

the integral of )(t  is zero at o . 

Wavelet Transform Coefficients:   

 As we know that 

Znnt m

m :)2(  is a Riesz basis of Wm , 

therefore, the wavelet transform coefficient of  f
L

2
(R) is given by  

Znnttf m

m :)2(),(  

By Plancharel theorem, we have,  

)2()(ˆ),(ˆ
2

1
)2(),( ni

m

m

m

m

efnttf

 
Using the definitions (2.1) and (2.2) , we have,  
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This shows that support of m
ˆ  is 

11 2,22,2 mmmm
 which is same 

as support of )2(ˆ m
. Now let us assume that  
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Here  )(mF  is )2( 1m
- periodic and so is the 

function 
)2( ni m

e  In fact, the system 
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Where the last inner  product is the one associated 
with L

2
([0,2

m+1
]). This implies that the wavelet 

coefficients are zero only when Fm = 0.  
 Now we can prove the following proposition:  

Proposition 3 : Suppose that  f L
2
(R) and f̂  has  

support contained in I=(a,b), where  b-a  2  and I [-

, ]= , then it has non zero wavelet coefficients only 

for some m 0 and all the wavelet coefficients of   f   
are zero for  m < 0. 

Proof: It     m  0, k  0 and   I, we have that 

)2( 1 km
 lies outside the support of f̂ . In 

fact, If k > o 

b = a + ( b- a)  a + 2   a +2
m+1

k  < km 12  

so that, in this case , km 12   is to the right of I.  

If   k < 0 

a = b + (a - b) = b - ( b- a)  b- 2   b + 2k   b 

+2
m+1

k  >  +2
m+1

k  

This proves that   +2
m+1

k  is to the left of I. 
Therefore all the terms in Fm are zero except the one 
corresponding to k = 0 

For k = 0 , 0)2(ˆ)22(ˆ mm k only 

when  (- , ). 

If  m < 0 then |2
-m

| = 2
-m

 | | > 2
-m

 since   I and 

 I  [- , ] = ,  

hence 0)2(ˆ m
 for all m < 0 . If 

Ikm )2( 1
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| 2
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 + k2  | = 2
-m

 | km 12 | =                                

2
-m

 | km 12 | > 2
-m

  2  

Thus  | 2
-m

 + k2  | > 2  for all m < 0.  

Hence,   0)22(ˆ km
 for all  m < 0. 

This completes the proof of the proposition. 
The Continuous Wavelet Transform :  

 Let a≠0 and b be real numbers. The 

Continuous PS wavelet transform of f L
2
(R) can be 

defined by   

dt
a
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Where  is the PS mother  wavelets.  With  
 

The terms 
 

baψ fbafW ,,),)((   are called the 

continuous wavelet coefficients of    f. 
Example 1 :  

 We shall consider wavelet transform of an 
harmonic function. Let the signal be given by  
 

t1i
Ae  S(t)  

Then the wavelet transform is expressed as  
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  The last expression shows that the CWT of 
the signal is an analytic function which tends to zero 

as b .  We can also generalize the above example 
for the case that the amplitude A is a function of time. 
In this case, the wavelet transform can be seen as the 
Fourier transform of the product of two signals, A(t)  

and a,b(t) which results in convolution of the two 
Fourier transforms. 
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Conclusions 

 We have shown that the PS wavelets are 
differentiable and integrable functions. Moreover, their 
differentials and integrals belong to the same space 
W0. We have also shown that wavelet coefficients  
can be determined  using their band limited character. 
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